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Modeling of a Coaxial-Waveguide
Power-Combining Structure

MAREK E. BIALKOWSKI

Abstract —The modeling of the Kurokawa-Magalhaes power-combiner
mounting structure is presented. The combiner is regarded as a four-port
network with the ports created at the coaxial-waveguide apertures. By
using a radial-modal wave approach, the admittance matrix for this
network is determined. The theory is verified through an alternative
approach based on the equivalence between a coaxial-waveguide junction
and a dual-gap post structure.

I. INTRODUCTION

HE CROSS-COUPLED coaxial-waveguide structure,

introduced by Kurokawa and Magalhaes [1], has
proved to be a successful module in the design of narrow-
band power combiners [2]-[4]. Although this type of com-
biner has been in use for a long time, its design has been
mostly empirical. A theoretical approach to the design of
the coaxial-rectangular waveguide combiner has been ini-
tiated by Chang and Ebert [2]. They presented an equiv-
alent circuit for the single coaxial-waveguide coupling
structure and showed its application in the design of
multiple diode combiners. The model presented in [2]
neglects actual dimensions of the coaxial aperture and also
does not take into account interactions between coaxial
lines.

Recently, more accurate models of single coaxial-wave-
guide junctions have been presented by a number of other
researchers [4], [6], {9], [15]. However, a solution to the
multiple coaxial coupling structure is still missing,

One possible method to include multiple interactions in
the combiner would be adaption of the modified approach
by Joshi and Cornick [12]. In this method, coaxial-wave-
guide junctions would be replaced by equivalent strips
with dual gaps [9], [10]. Although this approach is
mathematically straightforward, problems do exist in using
empirical factors to establish equivalence between round
posts and flat strips, gaps, and coaxial entries [8]-[10].

The work presented here uses an alternative approach in
which actual circular-rectangular geometry of the com-
biner is taken directly into account. The theory is based
upon a radial-modal wave analysis, which is essentially
equivalent to the method of images [4]-[6]. However, in
contrast to the latter, the results are produced directly in
terms of a fast converging series.
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II. ANALYSIS OF THE COMBINER

The analyzed combiner module shown in Fig. 1 is
created by two pairs of the coaxial-line-waveguide junc-
tions. These junctions are located at the same transverse
plane z =0, with S; and S, the mean horizontal positions
in the x-direction. It is assumed that the coaxial lines are
identical with radii a and b and are located symmetrically:
S, = A — ;. Although the whole network includes six ports,
it can be regarded as a four-port network with four ports
created at the coaxial apertures, while the remaining two
waveguide ports are terminated. In practice, the frequency
of operation is such that only TEM waves can be propa-
gated along the coaxial lines. In such situations, the net-
work can be described in terms of voltages, currents, and
admittances as seen by the TEM waves. The four-port can
be characterized by the admittance matrix {Y,,} with

*elements defined in [6]

J, .
Yy=--  while V,,,=0 (1)
Vi
where V, is a voltage applied at the kth coaxial aperture
V== ["Eu(r)-a,dr
a

where E,, is the electric field at the kth aperture, and J, is
a current at the i/th aperture
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where H,, is the magnetic field at the ith aperature, and-
r, ¢, v are cylindrical coordinates.
The problem of determining Y, is stated as follows.

(i) Find the field in the waveguide due to the voltage V'
applied to one aperture while the remaining apertures are
closed by perfect conductors.

(ii) Use definition (1) to calculate Y.

As the structure of the combiner is symmetric, the matrix
(Y, } is also symmetric and only elements Y,, with k=1
need to be determined.

A. Solution to the Field Problem

When voltage V' is applied to the first aperture, it is
equivalent to having a magnetic current M on the aperture
surface [6]. The current M can be approximated by the
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Fig. 1. Power-combiner configurations. (a) Cross section of the power-
combiner module. (b) The combiner with the equivalent magnetic
current M. (¢) The double-gap equivalent model.

TEM coaxial component [6], [14], [15], [17]

—. @)

For convenience, the field E, H produced by M can be
divided into two components. A suitable division can be
achieved with the use of the Schelkunoff’s field equiv-
alence principle [15]. The procedure consists of two steps:
1) introduction of a conducting wall and determination of
the field E,, H,; 2) removal of the wall, introduction of the
virtual source, and determination of the remaining field
E, H,.

In the problem considered here, the first component
represents the field E,, H, produced by M in the coaxial
cavity created by extending the first outer coaxial conduc-
tor into the guide (see Fig. 1(b)). The field E,, H; exists
only within the coaxial cavity. This field is radial TEM and
corresponds to the currents 7.(y) and — I (y) flowing on
the inner and outer coaxial conductors, respectively. From
the analysis of the coaxial cavity, the current 7, is given by

cosk(y— B
Lly)==J z;;nkB : )
where
Z, b
Z(=2—ﬁ1n( )

and is the characteristic impedance of the coaxial line, k is
the wavenumber, and Zj; is the intrinsic impedance.

To recover the original field E, H, the outer cavity wall
is removed and at its place a virtual source in the form of
the current 7 (y) is introduced. The new current flows in
the opposite direction to the current, which existed within
the cavity. The virtual current produces the additional field

E5, H,. The field E,, H , exists in the whole volume of the
Wavegulde and generates currents I;, I, flowing on two
cylindrical posts, which represent the inner conductors of
the coaxial lines. As the posts are thin in comparison to
the guide width, the currents can be considered cir-
cumferentially uniform.
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Possible variation of the current densities can be as-
sumed in the y-direction and the currents can be sought in
the form of Fourier series

s €on
Il(y) = Z Iln—ECOSkyny
n=0
0

(4a)

Also, the current I, can be expanded into the Fourier
series

€on
IZ(y) = Z 12n_B~ COSkyny'
n=20

0
L) = T 1 cosk,y (4b)
where
k1 nll
- i 2 _ 12 _. -
l3n_./Zc 3 s 4 _kyn kza kyn_ B

and where ¢, is the Neuman factor.

The immediate problem is the determination of the
coupling between the currents I, I,, I, and the field E,, H,
in the waveguide. Convenient expressions for finding the
required coupling are presented in the Appendix.

For purposes of analysis, only knowledge of the y-com-
ponent of the electric field is required. The field E, can be
regarded as a superposition of the individual fields pro-
duced by the currents I, I,, and I,. The y-component of
the electric field due to each individual harmonic of the
currents I;, I,, or I, can be found by using formulas (A2)
or (A10) given in the Appendix.

By including the fact that each harmonic of the y-com-
ponent of the electric field E, is zero on the conducting
surfaces of the posts, the following expressions for I, and
I, coefficients in (4a) are obtained:

I, 1,(q,a)+ L,I,(q,b)

" Ko(g,a)+ G lo(g,a)
— _ IZnIO(qna)Dn+13n(KO(qnb)+CnIO(QVlb)) (5)
v KO(qna)+CnIO(qna)

where I, and K, are modified Bessel and Hankel func-
tions.

The expression (4a) in conjunction with (5) gives values
of the currents flowing on the posts in the presence of the
field E,, H,. The total current I,, flowing on the inner
conductor of the coaxial line in the presence of the field
E, H is given as the sum of I, and I,. The total current I,,
on the second coaxial-line conductor is given by I, only.
This is so since the field E, H is identical with E,, H, for
points in the vicinity of the second coaxial line.

The remaining part of the problem is the determination
of the currents J, required to find values of the admittance
matrix.

B. Determination of the Admittance Matrix {Y,, }

By using the radial-wave analysis presented in the Ap-
pendix, it can be shown that the currents J, (1) can be



BIALKOWSKI: COAXIAL-WAVEGUIDE POWER-COMBINING STRUCTURE

expressed by

=% 2k,

i ZqZ yn =b)COSkynyi
— jeosk(y,— B
N ) lf Si = Sl
+ Z sin kB (6)
0 if §;=8;
where y,=0 or B.

Expression (6) has been obtained with the use of defini-
tion (1). The first term in (6) represents a contribution of
the TM radial magnetic field H, and the second term is
due to TEM field H;. In the derivation of the first term,
the property (All) has been used. The final values of J,
and then Y, can be found by using the explicit expressions
for the coefficients E,, given in the Appendix.

The following equations present final results for the
elements of the admittance matrix:

= 2—: [D IO(qnb)T +I3nIO(qnb)+IZnIO(qna)Qn]

jeotkB
W |-——
_ Zc ZO i
- R
Yy -S> A
Z_ sinkB
Yy
2HZ
Yy

Where T, = 1,Iy(4,0) + I5,15(q,b) and Q,=Ko(q,b)+
C,1,(q,b). The coefficients C, and D, can be found in the
Appendix.

IIL

To confirm the validity of the analysis, a computer
program for determining the admittance matrix of the
power-combiner circuit has been developed. Cylindrical
functions in expression (7) were calculated with the use of
a polynomial approximation {16].

First, the analysis was applied to the single coaxial-
waveguide junction, since it was easy to compare numeri-
cal results with some published experimental and theoreti-
cal data [6], [9], [10]. By setting coefficients D, to zero, the
value of Y;; gave the input admittance of the single
coaxial-guide junction. Fig. 2 shows comparison between
theoretical and experimental values [6), [10] of the input
impedance Z =1/Y,, for the standard X-band waveguide
and a 50-Q, 7-mm coaxial line. In calculations, only eight
radial harmonics were required to produce results in error
by less than 1 percent. The comparison shows very good
agreement between theory and measurements.

In the next stage, the theory was verified for the case of
the double coaxial-waveguide structure. As there was no
experimental data available for the input admittances seen
from the coaxial apertures, an indirect approach was used.

REsuULTS
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Fig. 2. Input impedance of the single coaxial-waveguide junction, com-
parison between experimental values and numerical values obtained
from the radial-modal analysis. Dimensions: waveguide: A=22.86
mm, B=10.16 mm, S = A/2; coaxial line: ¢ =1.52 mm, b=3.5 mm.
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Fig. 3. Input impedance Z=1/7), for the combiner, comparison be-

tween numerical results: radial-modal analysis ----; equivalent strips
: Dimensions: waveguide: A= 22.86 mm, B=10.16
= 4.5 mm; the equiv-

with gaps
mm; coaxial lines: ¢ =1.52 mm, b=3.5 mm, §;
alent gap height: G, =1.225 mm.

A new computer program based on the multiple-post
theory of [11] and [12] was developed. Round posts were
modeled by strips and coaxial apertures by equivalent gaps
[9]. The algorithm has been verified on the example of the
single coaxial-guide junction and compared with the theo-
retical and experimental results presented in [9] and [10].
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Fig. 4 Input impedance Z=1/7; for the combiner, comparison be-
tween numerical results: radial-modal analysis ----; equivalent strips
with gaps . Dimensions: waveguide: 4=2286 mm, »=10.16
mm; coaxial hnes a=152mm, b=3.5mm, S, =
gap height: G, =1.225 mm.

7 mm; the equivalent

The last program allowed for further verification of the
radial-modal analysis.

Figs. 3 and 4 show the values of the input impedance
Z =1/Y,, for the double coaxial-waveguide module calcu-
lated with use of the two methods based on equivalent
strips and radial-modal analysis. Two extreme cases are
presented: when the coaxial lines are adjacent to the
waveguide walls (Fig. 3) and when the coaxial lines are
close and centrally located in the waveguide (Fig. 4). In
both cases, the waveguide was match terminated. Com-
parison shows that the results based on the two approaches
are essentially the same. However, it should be noted that
the algorithm based on the radial-modal approach was six
times faster.

IV. CONCLUSIONS

A circuit model, given in terms of the elements of the
admittance matrix, for the Kurokawa-Magalhaes power
combiner has been found. The model has been verified by
comparison with the modified multiple-post model of Joshi
and Cornick [11]. It has been found that the accuracy of
the radial-modal approach is similar to that obtained
through the alternative approach with strips and gaps.
However, the advantage of the new theory is that it does
not require the use of any experimental factors. The calcu-
lations are also faster.

Although the analysis has been demonstrated for the
special case of the double coaxial-waveguide module, it
can be expanded for the multiple structure with arbitrary
positions of the coaxial lines. The presented analysis opens
the way for the accurate design of this type of power
combiner at microwave and millimeter-wave frequencies.

APPENDIX
RADIATION OF AN ELECTRIC CURRENT FLOWING ON
A CIRCULAR CYLINDER IN A RECTANGULAR GUIDE

In the analysis of the power combiner, there arises a
need to determine the electromagnetic field on one cylin-
drical surface W, produced by an electric current flowing
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on another cylindrical surface W;, both perpendicular to
the broad wall of the guide. Two distinguished cases of
interest are 1) when cylinders are noncoaxial, and 2) when
cylinders are coaxial.

The problem stated in the above form is generally
difficult to solve; therefore, some simplifying assumptions
should be made. For purposes of analysis of the power
combiner, the current is assumed to flow in the y-direction
with the density uniform on the perimeter of W,. Further
considerations can be restricted to the current I(y) given
by the single harmonic cosk , y. A general solution can be
obtained with the use of Fourier analysis. The wave pro-
duced by the current I(y) is radial and transverse mag-
netic (TM) to the y-direction. The wave can be considered
axially symmetric for points in the vicinity of the two
surfaces W, and W,. The last assumption is of an ap-
proximate nature. However, it should produce sufficiently
accurate results if the diameters of the two cylinders are
much smaller than the waveguide width.

It is worth noting that, as the field is TM radial, it is
sufficient to obtain an expression for the y-component of
the electric field. The remaining components can be pro-
duced from formulas held for TM waves [17].

Case 1)

The surfaces W, and W, are separated in space and
given by the following expressions:

Wi n—=(Sy,z)|=a;, 0<y<B
Wy |n=(8,,2,)|=a 0<y<B (Al
where §,, z, represent the mean positions in the x- and

z-directions and a, is the radius.

The wave generated by the current located on W, takes
the form of a radial wave traveling inwards to the surface
W,. From radial-wave theory [17], it is known that this
type of wave is nonsingular at the origin of W,. Therefore,
it should be represented by a nonsingular Bessel function.

By including reciprocity between source and observation
points, the following expression for the y-component of
the electric field can be deduced [3], [6]:

an

Em(S7,zz,r2) ik

==, D (Sl’ 21,52, Az)
'IO(qnal)IO(anZ) Cos kyny (A2)
where

J=V-1 g}=

and where & is the wavenumber, Z; is the wave imped-
ance, and I, is the modified Bessel function. Expression
(A2) is valid for r, representing points close to the surface
W,. The coefficient D, is unknown and can be determined
by using modal analysis. When radii of W, and W, tend to
zero, £, can be conveniently expressed in terms of the
waveguide modes [8], [13] as follows:

2 Z (ZI’ZZ)
m"l

-sink ., Sysink ,S,cosk,,y

k2, — k?

Ew1(S"’Z7’a2 k

mn
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where

R
A
The function 7,, depends on the load conditions at the
waveguide arms and has been given in [12] and [13]. For a
case when the guide is match-terminated, 7, reduces to
the exponential factor

(A3)

Tn(2,2') = e Tmlz=71,

By comparing (A2) and (A3), D, can be determined and is
given by

Dn(Sl’Zl’S27ZZ)

o0
-ty TL%fl—@l sink,, S,sink,, S,. (A4)

m-1 mn
Convergence of the series in (A4) depends on the value of
n and the distance |z, — z,]. When |z, — z,| is large, the
series converges rapidly irrespective of the value of n. For
|z, z,| small and n such that ¢2 <0, the convergence of
the series in (A4) is slow. The convergence can be accel-
erated by adding and subtracting terms of the asymptotic
series

0 o kemlz2-zl

F=211 Y

m=1 xm

sink,,,S;sink,,,S, (AS5)

which is represented analytically by the function

11
4 sinh ﬂ(lzz —zi|= j(Slr—

F=—-—1n
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sented by
mMs,\ 20 % (7, 1
~1n(cos A )—7m2=1 rmn kxm
D,= (-1)"sin’k,,S,, forgr<O0 - (A8)
Ko(g,R)~ L Ko(4,R;),  forg;>0

Case 2)

The cylindrical surfaces W, and W, are coaxial and
described by the following expressions:

Wi
W,:

Ifl—(sl’zl)|=al

0<y<B. A9
1’72“(51,21”:“2} g (49)

The radial waves approaching W, travel inwards and
outwards to W,. The expression representing the y-compo-
nent of the electric field should include a singularity at the
source {17]. A suitable form for the y-component of the
electric field due the current I(y)=cosk,,y is given as
follows [13]:

7 X ,
E (S, 2,,1)= I 2{ o(4n72) 15(g,45)

qn )
200k "\ Ko(g,a,) 1o (q,r,)

+ G, (S, ZZ)IO(anZ)IO(qnaZ)}COSkyny (A10)

where the upper row holds for r, > a, and lower row holds

I
S,)) sinh a(lzz — |+ j(S; -5,))

2

which, for z;=z,=0and §,=4 - S,, can be reduced to

- Al I1s,
——-—3 n(cos A )

For n sufficiently large such that g2 >0, a more con-
venient representation of the coefficient D, can be found.
It should be noted that, for g2 >0, the current on the
surface W, produces a radial wave which strongly decays
with distance. In this case, a rectangular guide can be
regarded as a parallel-plate guide. If the surface W, is
close to the guide walls, single images of the source also
have to be taken into account. Therefore, the coupling
coefficient D, can be represented by

Dn=K0(an)—ZK0(ani) (A7)
where R =|(S}, z;)—(S,, z;)| and R, means the distance
between (S,, z,) and a possible image located at (S, z;).

For the purpose of the analysis of the power combiner,
the y-component of the electric field due to the current
I(y)=cosk,,y is given by (A2) in which D, is repre-

II oI ]
sinh ﬁ'“zz —z|— j($;+ Sz)) sinh ﬂ“zz — zy|+ j(8, + Sz))

(A6)

for r,<a,. The coupling coefficient C, represents the
interaction of the source with the waveguide walls and is
given by

118,
SlnT
1n(Bq,)+1n 7

24

o T 1
22 k S mhn -
Z sin xm 1( T )

m=1 mn

for g2 <0
- ZKO(anl)’

C, = 211
+ —

for g2>0

where 1nf = —-0.1159, R, is the distance between the
source and its image, and S, = 4 — S,. The other compo-
nents of the electromagnetic field in cases 1) and 2) can be
obtained from the formulas holding for the TM radial
harmonics [17]. The component ¢ of the magnetic field
required in (1) is given as an infinite series of spatial
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harmonics. Each harmonic can be determined by using the
following relationship [17]:

H,, (S k9L, (A11
¢n( i’zi’r)_zoqs ar )
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