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Modeling of a Coaxial-Waveguide
Power-Combining Structure

MAREK E. BIALKOWSKI

Abstract —The modeling of the Kurokawa-Magalhaespower-combiner
mounting structure is presented.The combiner is regardedas a four-port
network with the ports created at the coaxial-wavegnideapertures. By
using a radial-modal wave approach, the admittance matrix for thk

network is determined. The theory is verified through an alternative

approach based on the equivalence between a coaxial-wavegnide junction

and a dual-gap post structure.

I. INTRODUCTION

T HE CROSS-COUPLED coaxial-waveguide structure,

introduced by Kurokawa and Magalhaes [1], has

proved to be a successful module in the design of narrow-

band power combiners [2]–[4]. Although this type of com-

biner has been in use for a long time, its design has been

mostly empirical. A theoretical approach to the design of

the coaxial-rectangular waveguide combiner has been ini-

tiated by Chang and Ebert [2]. They presented an equiv-

alent circuit for the single coaxial-waveguide coupling

structure and showed its application in the design of

multiple diode combiners. The model presented in [2]

neglects actual dimensions of the coaxial aperture and also

does not take into account interactions between coaxial

lines.

Recently, more accurate models of single coaxial-wave-

guide junctions have been presented by a number of other

researchers [4], [6], [9], [15]. However, a solution to the

multiple coaxial coupling structure is still missing.

One possible method to include multiple interactions in

the combiner would be adaption of the modified approach

by Joshi and Cornick [12]. In this method, coaxial-wave-

guide junctions would be replaced by equivalent strips

with dual gaps [9], [10]. Although this approach is

mathematically straightforward, problems do exist in using

empirical factors to establish equivalence between round

posts and flat strips, gaps, and coaxial entries [8]-[10].

The work presented here uses an alternative approach in

which actual circular–rectangular geometry of the com-

biner is taken directly into ;ccoun~. The theory is based

upon a radial–modal wave analysis,

equivaknt to the method of images

contrast to the latter, the results are

terms of a fast converging series.

which is essentially

[4]-[6]. However, in
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II. ANALYSIS OF THE COMBINER

The analyzed combiner module shown in Fig. 1 is

created by two pairs of the coaxial-line-waveguide junc-

tions. These junctions are located at the same transverse

plane z = O, with SI and S2 the mean horizontal positions

in the x-direction. It is assumed that the coaxial lines are

identical with radii a and b and are located symmetrically:

S2 = A – S1. Although the whole network includes six ports,

it can be regarded as a four-port network with four ports

created at the coaxial apertures, while the remaining two

waveguide ports are terminated. In practice, the frequency

of operation is such that only TEM waves can be propa-

gated along the coaxial lines. In such situations, the net-

work can be described in terms of voltages, currents, and

admittances as seen by the TEM waves. The four-port can

be characterized by the admittance matrix {3A} with

elements defined in [6]

yk=+ while Vi ~ k = O (1)
k

where VA is a voltage applied at the k th coaxial aperture

V~=–jh~o~(r).Zrdr
a

where ~d~ is the electric field at the k th aperture, and Jl is

a current at the i th aperture

a

where ~al is the magnetic field at the i th aperature, and

r, 0, Y are cylindrical coordinates.
The problem of determining ~~ is stated as follows.

(i) Find the field in the waveguide due to the voltage V

applied to one aperture while the remaining apertures are

closed by perfect conductors.

(ii) Use definition (1) to calculate ~~.

As the structure of the combiner is symmetric, the matrix

{XL } is also symmetric and only elements ~, with k =1

need to be determined.

A. Solution to the Field Problem

When voltage V is applied to the first aperture, it is

equivalent to having a magnetic current ~ on the aperture

surface [6]. The current ~ cart be approximated by the
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Fig. 1. Power-combiner configurations. (a) Cross section of the power-
combiner module. (b) The combiner with the equivalent magnetic

current ~. (c) The double-gap equivalent model.

TEM coaxial component [6], [14], [15], [17]

(2)

\a)

For convenience, the field ~, H produced by ~ can be

divided into two components. A suitable division can be

achieved with the use of the Schelkunoff’s field equiv-

alence principle [15]. The procedure consists of two steps:

1) introduction of a conducting wall and determination of

the field El, fil; 2) removal of the wall, introduction of the

virtual source, and determination of the remaining field

E2, P2.

In the problem considered here, the first component

represents the field El, RI produced by ~ in the coaxial

cavity created by extending the first outer coaxial conduc-

tor into the guide (see Fig. l(b)). The field El, El exists

only within the coaxial cavity. This field is radial TEM and

corresponds to the currents lC( y ) and – 1,(y) flowing on

the inner and outer coaxial conductors, respectively. From

the analysis of the coaxial cavity, the current 1, is given by

cosk(y– B)
l.(Y)=–~ ~,sin~~

L

(3)

where

and is the characteristic impedance of the coaxial line, k is

the wavenumber, and Z~ is the intrinsic impedance.——
To recover the original field E, H, the outer cavity wall

is removed and at its place a virtual source in the form of

the current lC( y ) is introduced. The new current flows in

the opposite direction to the current, which existed within

the cavity. The virtual current produces the additional field

~j, ~2. The field ~2, ~. exists in the whole volume of the

waveguide and generates currents II, 12 flowing on two

cylindrical posts, which represent the inner conductors of

the coaxial lines. As the posts are thin in comparison to

the guide width, the currents can be considered cir-

cumferentially uniform.

Possible variation of the current densities can be as-

sumed in the y-direction and the currents can be sought in

the form of Fourier series

cc

12(Y) = ~ Ln; cOSkYny - (4a)
~=o

Also, the current IC can be expanded into the Fourier

series

It(y) = ~ 13$coskyny (4b)
~=()

where

and where eo. is the Neuman factor.

The immediate problem is the determination of the

coupling between the currents 11,12, I, and the field ~z, ~z

in the waveguide. Convenient expressions for finding the

required coupling are presented in the Appendix.

For purposes of analysis, only knowledge of the y-com-

ponent of the electric field is required. The field ~z can be

regarded as a superposition of the individual fields pro-

duced by the currents 11, 12, and I,. The y-component of

the electric field due to each individual harmonic of the

currents Zl, 12, or 1, can be found by using formulas (A2)

or (A1O) given in the Appendix.

By including the fact that each harmonic of the y-com-

ponent of the electric field ~2 is zero on the conducting

surfaces of the posts, the following expressions for Il. and

12,1coefficients in (4a) are obtained:

where 10 and K. are modified Bessel and Hankel func-

tions.

The expression (4a) in conjunction with (5) gives values

of the currents flowing on the posts in the presence of the

field ~z, ~2. The total current Zl, flowing on the inner

conductor of the coaxial line in the presence of the field——.
E, H N given as the sum of 1. and Il. The total current Izf

on the second coaxial-lin~ conductor is given by 12 only.
This is so since the field E, R is identical with ~z, Hz for

points in the vicinity of the second coaxial line.

The remaining part of the problem is the determination

of the currents J, required to find values of the admittance

matrix.

B. Determination of the Admittance Matrix { ~~ }

By using the radial-wave analysis presented in the Ap-

pendix, it can be shown that the currents .( (1) can be
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1expressed by

/

–jcosk(yi– B) .

+ ZC sin kB ‘f ‘i = “ (6)

\ o if Si = SI

where y, = O or B.

Expression (6) has been obtained with the use of defini-

tion (l). The first term in (6) represents a contribution of

the TM radial magnetic field ~. and the second term is

due to TEM field El. In the derivation of the first term,

the property (All) has been used. The final values of +

and then Y,~ can be found by using the explicit expressions

for the coefficients EYn given in the Appendix.

The following equations present final results for the

elements of the admittance matrix:

Yll

.

Y21

Y31

n 10 12 14

Fig. 2. Input impedance of the single coaxial-waveguidejunction, com-
parison between experimental values and numerical values obtained
from the radial–modal analysis. Dimensions: waveguide: A = 22.86
mm, B =10.16 mm, ,S = A/2; coaxiaf line: a =1.52 mm, b = 3.5 mm.

where ~, = IIHIo(q.a)+ 13#O(q.b) and Q. = Ko(q.b) +

C,, l.( q.b ). The coefficients C. and D. can be found in the
Appendix.

III. RESULTS

To confirm the validity of the analysis, a computer

program for determining the admittance matrix of the

power-combiner circuit has been developed. Cylindrical

functions in expression (7) were calculated with the use of

a polynomial approximation [16].

First, the analysis was applied to the single coaxial-

waveguide junction, since it was easy to compare numeri-

cal results with some published experimental and theoreti-

cal data [6], [9], [10]. By setting coefficients D. to zero, the

value of Yll gave the input admittance of the single

coaxial-guide junction. Fig. 2 shows comparison between

theoretical and experimental values [6], [10] of the input

impedance Z =1/ Yll for the standard X-band waveguide

and a 50-fl, 7-mm coaxial line. In calculations, only eight
radial harmonics were required to produce results in error

by less than 1 percent. The comparison shows very good
agreement between theory and measurements.

In the next stage, the theory was verified for the case of

the double coaxial-waveguide structure. As there was no

experimental data available for the input admittances seen

from the coaxial apertures, an indirect approach was used.

\
(-1)”

(7)

UO*

FREW2tKY GHZ

Fig. 3. Input impedance Z = l/Yll for the combiner, comparison be-
tween numerical results: radial-modaf analysis --- -; equivalent strips
with gaps —; Dimensions: waveguide: A = 22.86 mm, B =10.16
mm: coaxial lines: a = 1.52 mm, b = 3.5 mm, SI = 4.5 mm; the ec@v-
alent gap height: G, =1.225 mm.

A new computer program based on the multiple-post
theory of [11] and [12] was developed. Round posts were

modeled by strips and coaxial apertures by equivalent gaps

[9]. The algorithm has been verified on the example of the

single coaxial-guide junction and compared with the theo-

retical and experimental results presented in [9] and [10].
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Fig. 4 Input Impedance Z =1/ Yll for the combiner, comparison be-

tween numerical results: radial–modal anafysis --- -; equivalent strips
with gaps —: Dimensions: waveguide: A = 2286 mm, h = 10.16

mm: coaxial lines: a = 1.52 mm, b = 3.5 mm, SI = 7 mm; the equivalent
gap height: Cc = 1.225 mm.

The last program allowed for further verification of the

radial–modal analysis.

Figs. 3 and 4 show the values of the input impedance

Z =1/ Yll for the double coaxial-waveguide module calcu-

lated with use of the two methods based on equivalent

strips and radial–modal analysis. Two extreme cases are

presented: when the coaxial lines are adjacent to the

waveguide walls (Fig. 3) and when the coaxial lines are

close and centrally located in the waveguide (Fig. 4). In

both cases, the waveguide was match terminated. Com-

parison shows that the results based on the two approaches

are essentially the same. However, it should be noted that

the algorithm based on the radial–modal approach was six

times faster.

IV. CONCLUSIONS

A circuit model, given in terms of the elements of the

admittance matrix, for the Kurokawa-Magalhaes power

combiner has been found. The model has been verified by

comparison with the modified multiple-post model of Joshi

and Cornick [11]. It has been found that the accuracy of

the radial–modal approach is similar to that obtained

through the alternative approach with strips and gaps.

However, the advantage of the new theory is that it does

not require the use of any experimental factors. The calcu-

lations are also faster.

Although the analysis has been demonstrated for the
special case of the double coaxial-waveguide module, it

can be expanded for the multiple structure with arbitrary

positions of the coaxial lines. The presented analysis opens

the way for the accurate design of this type of power

combiner at microwave and millimeter-wave frequencies.

APPENDIX

RADIATION OF AN ELECTRIC CURRENT FLOWING ON

A CIRCULAR CYLINDER IN A RECTANGULAR GUIDE

In the analysis of the power combiner, there arises a

need to determine the electromagnetic field on one cylin-

drical surface WL produced by an electric current flowing

on another cylindrical surface WI, both perpendicular to

the broad wall of the guide. Two distinguished cases of

interest are 1) when cylinders are noncoaxial, and 2) when

cylinders are coaxial.

The problem stated in the above form is generally

difficult to solve; therefore, some simplifying assumptions

should be made. For purposes of analysis of the power

combiner, the current is assumed to flow in the y-direction

with the density uniform on the perimeter of WI. Further

considerations can be restricted to the current J(y) given

by the single harmonic cos Icy my.A general solution can be

obtained with the use of Fourier analysis. The wave pro-

duced by the current 1(y) is radial and transverse mag-

netic (TM) to the y-direction. The wave can be considered

axially symmetric for points in the vicinity of the two

surfaces WI and Wz. The last assumption is of an ap-

proximate nature. However, it should produce sufficiently

accurate results if the diameters of the two cylinders are

much smaller than the waveguide width.

It is worth noting that, as the field is TM radial, it is

sufficient to obtain an expression for the y-component of

the electric field. The remaining components can be pro-

duced from formulas held for TM waves [17].

Case 1)

The surfaces WI and Wz are separated in space and

given by the following expressions:

w,: lrl-(Sl, zl)l= al, O<y<B

Wz: lrz-(Sz,z2)l=a,, O<Y<B (Al)

where S,, z, represent the mean positions in the x- and

z-directions and a, is the radius.

The wave generated by the current located on WI takes

the form of a radial wave traveling inwards to the surface

W2. From radial-wave theory [17], it is known that this

type of wave is nonsingular at the origin of Wz. Therefore,

it should be represented by a nonsingular Bessel function.

By including reciprocity between source and observation

points, the following expression for the y-component of

the electric field can be deduced [5], [6]:

Zo9i
Eyn(s2,z2,r2)= ~Dn(sl, zl, s2,zJ

“~o(q.a,)~o(q.~,)cosk,.y (AZ)
where

.i=m q~=k&k2

and where k is the wavenumber, Z. is the wave imped-

ance, and 10 is the modified Bessel function. Expression

(A2) is valid for rz representing points close to the surface

Wz. The coefficient D. is unknown and can be determined

by using modal analysis. When radii of WI and W2 tend to

zero, .EP,, can be conveniently expressed in terms of the

waveguide modes [8], [13] as follows:
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where sented by

(A3)

The function T-m. depends on the load conditions at the

waveguide arms and has been given in [12] and [13]. For a

case when the guide is match-terminated, ~~~ reduces to

the exponential factor

Tmn(Z, Z’) = e–rm’’lz–”i.

By comparing (A2) and (A3), D. can be determined and is

given by

Mcos%-%?i(%-+
D.=

\

.(–l)msin2kXnSl, forq~<O “
(PM)

K~(qnR)– z~o(%#i)> for q;> O
z

Case 2)

The cylindrical surfaces WI and Wz are coaxial and

described by the following expressions:

The radial waves approaching WI travel inwards and

outwards to W2. The expression representing the y-compo-

is given as

Convergence of the series in (A4) depends on the value of nent of the electric field should include a singula~ty at ~he

n and the distance IZl – Zz]. When Izl – Zjl is large, the source [17]. A suitable form for the y-component of the

series converges rapidly irrespective of the value of n. For electric field due the current 1(y) = cos kvn y

Izl – Z21 small and n such that q;< O, the convergence of follows [13]:
the series in (A4) is slow. The convergence can be accel-

erated by adding and subtracting terms of the asymptotic
(

%7(s2! z, ~,) = ~q: :p;:;;:f’:;

series o n

~ ~–kKmlz2–zll

F=211~ k sin kx#l sin kx~S2 (A5)

}
+ C.(S2! z2)~o(%?~2)~o(w2) cosk.ynY (~lo)

rn=l Xm

which is represented analytically by the function where the upper row holds for r2 > a z and lower row holds

sinh ~(lz2–zll– j(Sl– S2))sinh ~(lz2–zll+ j(Sl– S2))

F=–~ln

sinh~(lzz– zJ- j(S1+ S2))sinh~(lz2 – Zll+ j(S1+ S2))

(A6)

which, for ZI = Z2 = O and Sz = A – S1, can be reduced to

A ml

()
F=–%ln cos —

A“

For n sufficiently large such that q;> O, a more con-

venient representation of the coefficient D. can be found.

It should be noted that, for q:> O, the current on the

surface WI produces a radial wave which strongly decays

with distance. In this case, a rectangular guide can be

regarded as a parallel-plate guide. If the surface WI is

close to the guide walls, single images of the source also

have to be taken into account. Therefore, the coupling

coefficient D. can be represented by

D.= Ko(qn~)– z~o(9n~i) (A7)
i

where R = 1(S1, Zl) – (S2, Z2) I and R, means the distance

between (S2, Z2) and a possible image located at (Si, zi).

For the purpose of the analysis of the power combiner,

the y-component of the electric field due to the current

1(y) = cos k ,Hy is given by (A2) in which D. is repre-

for r2 < a z. The coupling coefficient C. represents the

interaction of the source with the waveguide walls and is

given by

1for q;< O

- ~Ko(qnR1), for q~>O
1

where In@ = —0.1159, R, is the distance between the

source and its image, and SI = A – S2. The other corlmpo-

nents of the electromagnetic field in cases 1) and 2) can be

obtained from the formulas holding for the TM radial

harmonics [17]. The component @ of the magnetic field

required in (1) is given as an infinite series of spatial



942 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-34, NO. 9, SEPTEMBER 1986

harmonics. Each harmonic can be determined by using the

following relationship [17]:

H+.(Si, zi, r)=&~. (All)
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